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Introduction 5 amyuaversry

= |nterest in influence of cultural context
for predicting users’ opinions on musical similarity
culture in a wider sense

= Current PhD thesis on: Adaptive computational
music similarity measures

For recommendation, analysis, indexing, ...

Investigation of relation between
= cultural attributes and
= similarity parameters
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Structure of Talk 5 cmvumveesin

= Similarity Modelling
Cultural User Data
Common ldea of Similarity?
= Preliminary Feasibility Study
The MagnaTagATune Dataset
Similarity data
Features
Similarity adaptation: Weight learning

= Conclusion
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Concept A7 Tonson

= Provide a computational means of music
similarity estimation

= Train / adapt a computational model to human
similarity votings

= Produce models for specific user groups

= Analyse gained models
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Similarity Modelling K cnyunversiTy

= Similarity measure Is defined as a function on
two music clips
culture-related user attributes

= The result is a similarity estimate

Song features; Acoustic >
features, Tags, Metadata.

Adapted recommendation

Query & Cultural indicators: >
Age, Gender, Origin, Education ...
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Model Training K e

= Mathematical model is tuned to human input
= Data needed:

clip features

similarity information

user attributes

Similarity information

Song features; Acoustic >
features, Tags, Metadata.

Similarity
Model

Query & Cultural indicators: >
Age, Gender, Origin, Education ...
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Cultural User Attributes
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= Exemplary list of collectable attributes

= Personal data
origin, gender, age
= Socio-economic background

education, occupation, income

Musical background
musical education, listening habits,

familiarity with style, “fan”
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Question: Cultural Grouping

= Later analysis:

group users by similarity models and cultural
attributes

Influential user attributes

.

‘T
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Data Collection K CmusveRsiTy
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Data Collection K o

= Get attributes and similarity data:
surveys
user profiles
social networks

= Games With A Purpose
gaming helps collect valuable data

tagging massive media (pictures, music)
web-based

Game rewards consensus
= (discourage idiosyncrasy)
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GWAP Example: Herdlt

facebook I
Play, Discover, Tag, Share GAME SCORES ABOUT BLOG DISCOVER

. Welcome Daniel, choose your music...

electronic blues
play >> play:>>
rock pop everything
play >> play >> play >>

Barrington et al. 2009
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GWAP Example: Herd|It K Covmveesimy

Herd It

Play, Discover, Tag, Sharo GAME SCORES ABOUT BLOG DiSCOVER

. Welcome Daniel, choose your music...

electronic blues
play >> play:>>
rock pop everything
play >> play >> play >>

=NERGETIC caly

HARRY

caat |
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GWAP Examp

Herd It

Play, Discover, Tag, Share GAME SCORES ABOUT BLOG DISCOVER
. Welcome Daniel, choose your music...
electronic blues
play >> play:>>

everything

rock pop
play >> play >>
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GWAP Example: Herdlt

| facebook [N 3 .o
Your Rank Daniel
Herd It 2 GAMEROUNDS O O O OO O O O 0O O 70 .

Play, Discovar, Tag, Sharo GAME SCORES ABOUT BLOG DISCOVER /
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Trivia Round

X What SONG have you been listening to?

=NERGETIC e n Cum on Everybody by Eminem

n Stop Being Greedy by DMX

' ﬂ In Da Club by 50 Cent
B S

caat | n Hypnotize by Notorious B.LG.

agree-0-meter
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Music Similarity Perception? 7 fusot™™

= Data collection

statements / opinions about musical properties
= similarity

approaches (especially GWAPS) come with different,
partly unknown biases

Psychological factors / biases in games to be
considered

= Training may give some results:

Is there a consensous / generally consistent opinion
on similarity

For a subgroup?
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Early Feasibility Experiment & dusaesm
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Early Feasibility Experiment &7 fuswes™

= Adapt metric parameters to human similarity
judgements from a human computation game.

= Evaluate quality of adaptation

adaptation to data
prediction of unseen data

= Here: No information about user attributes
general model
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The MagnaTagATune Dataset & sy

= Music clips from the Magnatune label

about 30 seconds long, most prominent genres:

= "electronica” (30%), "classical” (28%), "world” (15%)
and "rock” (17%)

= Similarity votings

= Audio features:
Vector representations of audio
Precomputed by [HOSSSNSYa
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Similarity data X B

Score Timer

800 s TagaTune 0:12

Hear Here

titt = THHTH HHHH HHHH IHHTH = it

Law et al. 2009
Bonus Round
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Similarity data

= Data collected via bonus round in TagATune game

Users aim to agree on outlying (most d|SS|m|Iar)
clip out of three |

533 triplet votings, 1019 clips

On average 14 votes per triplet

Some triplets reappear as permutation

Genre distribution favors ,electronic” genre

Most triplets contain 2 or 3 different genres
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Data preparation A oy nveRsiry

= Simplify data:
determine winning outlier where possible
discard votings without clear winner

C
Clips A - B
— [

= Derive similarity constraints:
C being the outlier implies
sim(A, B) > sim(A, C) AND sim(A, B) >sim(B, C)
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Feature Data K Ty UNIvERSITY

= Timbre

= Pitch class

= Rhythm

= Genre information.

= 120 features

= Similarity / metric space is defined on the feature space
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Timbre / Chroma Features K o

= Timbre of clip: 2 representative feature vectors
sorted according to accumulated time.

Harmonic content: 2 sorted feature vectors
feature data contains strength of each well-tempered

pitch-class
transposed to root note C
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Rhythm Features KT CITY UNIVERSITY

= MagnaTagATune contains beat positions and meter
iInformation.

= Analyse accentuation of eighths / sixteenths
By analysing repetitions in the clip‘s energy curve
For 11 of each of these positions

Power &nd Domination by the bots
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Genre Features
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b New. A ge
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Genre Features

= Genre information from the Magnatune label

= Small vocabulary: 44 genres for the whole set

= Binary vector per clip (O or 1 per genre)

Two vectors:
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Similarity Metric Learning

= Optimise a weighted metric using constraints:

Define a distance metric

For each training triplet, determine distance using the
new metric. Compare pairs (A, B), (A, C) to data In
training set

Optimise feature weights for violated constraints
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Evaluation Method K7 coyamyesimy

= 5-fold cross-validation
= (adapt and test on different subsets)

= 106 test constraints
= 427 training constraints
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= Weighted similarity measure gives improved results

= Baseline: equal-weighted Euclidean metric

Euclidean Weighted Weighted
mean mean std deviation
Training 91.0% 1%
0
Test 64.1% 75.2% 4.2%
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Conclusions and Future Work &7 soyssses

= Similarity and cultural context

= Basic experiment: similarity adaptation using weighted
Euclidean metrics works

= Future work
more elaborate features
different algorithms for metric adaptation

Currently testing more elaborate processing of
similarity votes

Gather similarity data with more context information

Comparison of user groups
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Thank you
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