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Introduction

� Interest in influence of cultural context
for predicting users‘ opinions on musical similarity
– culture in a wider sense 

� Current PhD thesis on: Adaptive computational � Current PhD thesis on: Adaptive computational 
music similarity measures
– For recommendation, analysis, indexing, ...
– Investigation of relation between 

� cultural attributes and
� similarity parameters
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Structure of Talk

� Similarity Modelling

– Cultural User Data

– Common Idea of Similarity?

� Preliminary Feasibility Study

– The MagnaTagATune Dataset

– Similarity data

– Features

– Similarity adaptation: Weight learning

� Conclusion
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Concept

� Provide a computational means of music 
similarity estimation

� Train / adapt a computational model to human 
similarity votingssimilarity votings

� Produce models for specific user groups

� Analyse gained models
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Model for Similarity Adaptation

Query & Cultural indicators:

Age, Gender, Origin, 
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Similarity 

specification

Song features;

Acoustic features,

Tags,

Metadata.

Education ...
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Similarity Modelling

� Similarity measure is defined as a function on
– two music clips
– culture-related user attributes

� The result is a similarity estimate
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Song features; Acoustic

features, Tags, Metadata.

Query & Cultural indicators:

Age, Gender, Origin, Education ...
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Adapted recommendation



Model Training

� Mathematical model is tuned to human input
� Data needed:

– clip features
– similarity information
– user attributes
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Song features; Acoustic

features, Tags, Metadata.

Query & Cultural indicators:

Age, Gender, Origin, Education ...

Similarity
Model

Similarity information



Cultural User Attributes

� Exemplary list of collectable attributes

� Personal data 

– origin, gender, age 

� Socio-economic background 

– education, occupation, income

� Musical background

– musical education, listening habits,

familiarity with style, “fan”
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Question: Cultural Grouping

� Later analysis: 

– group users by similarity models and cultural 
attributes 

– influential user attributes

– model differences
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Data Collection
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Data Collection

� Get attributes and similarity data:
– surveys 
– user profiles 
– social networks

� Games With A Purpose
– gaming helps collect valuable data
– tagging massive media (pictures, music)
– web-based
– Game rewards consensus 

� (discourage idiosyncrasy)
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GWAP Example: HerdIt
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Barrington et al. 2009



GWAP Example: HerdIt
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GWAP Example: HerdIt
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GWAP Example: HerdIt
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Music Similarity Perception?

� Data collection
– statements / opinions about musical properties

� similarity

– approaches (especially GWAPS) come with different, 
partly unknown biases

– Psychological factors / biases in games to be
considered

� Training may give some results:
– Is there a consensous / generally consistent opinion

on similarity
– For a subgroup?
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Early Feasibility Experiment
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Early Feasibility Experiment

� Adapt metric parameters to human similarity
judgements from a human computation game. 

� Evaluate quality of adaptation

– adaptation to data
– prediction of unseen data– prediction of unseen data

� Here: No information about user attributes
– general model
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The MagnaTagATune Dataset

� Music clips from the Magnatune label
– about 30 seconds long, most prominent genres:

� ”electronica” (30%), ”classical” (28%), ”world” (15%) 
and ”rock” (17%)

�� Similarity votings

� Audio features:
– Vector representations of audio
– Precomputed by
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Similarity data
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Similarity data

� Data collected via bonus round in TagATune game

– Users aim to agree on outlying (most dissimilar) 
clip out of three

– 533 triplet votings, 1019 clips

– On average 14 votes per triplet

2106.11.2011

– On average 14 votes per triplet

– Some triplets reappear as permutation

– Genre distribution favors „electronic“ genre

– Most triplets contain 2 or 3 different genres
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Data preparation

� Simplify data:
– determine winning outlier where possible
– discard votings without clear winner

B
A

C
Clips

� Derive similarity constraints: 
– C being the outlier implies
– sim(A, B) > sim(A, C)  AND sim(A, B) > sim(B, C)
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Feature Data

� Timbre 
� Pitch class 
� Rhythm
� Genre information.

� 120 features

� Similarity / metric space is defined on the feature space
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Timbre / Chroma Features

� Timbre of clip: 2 representative feature vectors
– sorted according to accumulated time.

� Harmonic content: 2 sorted feature vectors
– feature data contains strength of each well-tempered– feature data contains strength of each well-tempered

pitch-class
– transposed to root note C
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Rhythm Features

� MagnaTagATune contains beat positions and meter 
information.

� Analyse accentuation of eighths / sixteenths
– By analysing repetitions in the clip‘s energy curve
– For 11 of each of these positions– For 11 of each of these positions
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Genre Features

2606.11.2011 Daniel Wolff, On Culture-dependent Modelling of Music Similarity 



Genre Features

� Genre information from the Magnatune label

� Small vocabulary: 44 genres for the whole set

� Binary vector per clip (0 or 1 per genre)

Two vectors:
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Similarity Metric Learning

� Optimise a weighted metric using constraints:
1. Define a distance metric
2. For each training triplet, determine distance using the

new metric: Compare pairs (A, B), (A, C) to data in 
training set

3. Optimise feature weights for violated constraints3. Optimise feature weights for violated constraints
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Evaluation Method

� 5-fold cross-validation
� (adapt and test on different subsets)

� 106 test constraints
� 427 training constraints� 427 training constraints
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Results

� Weighted similarity measure gives improved results

� Baseline: equal-weighted Euclidean metric
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Euclidean
mean

Weighted
mean

Weighted
std deviation

Training
64.1%

91.0% 1%

Test 75.2% 4.2%



Conclusions and Future Work

� Similarity and cultural context

� Basic experiment: similarity adaptation using weighted
Euclidean metrics works

� Future work

– more elaborate features – more elaborate features 

– different algorithms for metric adaptation 

– Currently testing more elaborate processing of 
similarity votes

– Gather similarity data with more context information

– Comparison of user groups
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Fin

Thank youThank you
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