On Culture-dependent Modelling of Music Similarity

Daniel Wolff, Tillman Weyde

City University London

Department of Computing

Music Informatics Research Group

daniel.wolff.1@soi.city.ac.uk, t.e.weyde@city.ac.uk

Introduction

- Interest in influence of cultural context for predicting users' opinions on musical similarity
 - culture in a wider sense
- Current PhD thesis on: Adaptive computational music similarity measures
 - For recommendation, analysis, indexing, ...
 - Investigation of relation between
 - cultural attributes and
 - similarity parameters

Structure of Talk

- Similarity Modelling
 - Cultural User Data
 - Common Idea of Similarity?
- Preliminary Feasibility Study
 - The MagnaTagATune Dataset
 - Similarity data
 - Features
 - Similarity adaptation: Weight learning
- Conclusion

Concept

- Provide a computational means of music similarity estimation
- Train / adapt a computational model to human similarity votings
- Produce models for specific user groups
- Analyse gained models

Model for Similarity Adaptation

Similarity Modelling

- Similarity measure is defined as a function on
 - two music clips
 - culture-related user attributes
- The result is a similarity estimate

Model Training

- Mathematical model is tuned to human input
- Data needed:
 - clip features
 - similarity information
 - user attributes

Cultural User Attributes

- Exemplary list of collectable attributes
- Personal data
 - origin, gender, age
- Socio-economic background
 - education, occupation, income
- Musical background
 - musical education, listening habits,
 familiarity with style, "fan"

Question: Cultural Grouping

- Later analysis:
 - group users by similarity models and cultural attributes

influential user attributes

model differences

Data Collection

Data Collection

- Get attributes and similarity data:
 - surveys
 - user profiles
 - social networks
- Games With A Purpose
 - gaming helps collect valuable data
 - tagging massive media (pictures, music)
 - web-based
 - Game rewards consensus
 - (discourage idiosyncrasy)

Barrington et al. 2009

06.11.2011

Music Similarity Perception?

- Data collection
 - statements / opinions about musical properties
 - similarity
 - approaches (especially GWAPS) come with different, partly unknown biases
 - Psychological factors / biases in games to be considered
- Training may give some results:
 - Is there a consensous / generally consistent opinion on similarity
 - For a subgroup?

Early Feasibility Experiment

Early Feasibility Experiment

- Adapt metric parameters to human similarity judgements from a human computation game.
- Evaluate quality of adaptation
 - adaptation to data
 - prediction of unseen data
- Here: No information about user attributes
 - general model

The MagnaTagATune Dataset

- Music clips from the Magnatune label
 - about 30 seconds long, most prominent genres:
 - "electronica" (30%), "classical" (28%), "world" (15%) and "rock" (17%)
- Similarity votings
- Audio features:
 - Vector representations of audio
 - Precomputed by

Similarity data

Bonus Round

Law et al. 2009

Similarity data

- Data collected via bonus round in TagATune game
 - Users aim to agree on outlying (most dissimilar)
 clip out of three
 - 533 triplet votings, 1019 clips
 - On average 14 votes per triplet
 - Some triplets reappear as permutation
 - Genre distribution favors "electronic" genre
 - Most triplets contain 2 or 3 different genres

Data preparation

- Simplify data:
 - determine winning outlier where possible
 - discard votings without clear winner

- Derive similarity constraints:
 - C being the outlier implies
 - sim(A, B) > sim(A, C) AND sim(A, B) > sim(B, C)

Feature Data

- Timbre
- Pitch class
- Rhythm
- Genre information.
- 120 features
- Similarity / metric space is defined on the feature space

Timbre / Chroma Features

- Timbre of clip: 2 representative feature vectors
 - sorted according to accumulated time.
- Harmonic content: 2 sorted feature vectors
 - feature data contains strength of each well-tempered pitch-class
 - transposed to root note C

Rhythm Features

- MagnaTagATune contains beat positions and meter information.
- Analyse accentuation of eighths / sixteenths
 - By analysing repetitions in the clip's energy curve
 - For 11 of each of these positions

Genre Features

Genre Features

- Genre information from the Magnatune label
 - Small vocabulary: 44 genres for the whole set
- Binary vector per clip (0 or 1 per genre)

Two vectors:

Similarity Metric Learning

- Optimise a weighted metric using constraints:
 - Define a distance metric
 - 2. For each training triplet, **determine** distance using the new metric: **Compare** pairs (A, B), (A, C) to data in training set
 - 3. Optimise feature weights for violated constraints

Evaluation Method

- 5-fold cross-validation
 - (adapt and test on different subsets)
- 106 test constraints
- 427 training constraints

Results

- Weighted similarity measure gives improved results
- Baseline: equal-weighted Euclidean metric

	Euclidean mean	Weighted mean	Weighted std deviation
Training	64.1%	91.0%	1%
Test		75.2%	4.2%

Conclusions and Future Work

- Similarity and cultural context
- Basic experiment: similarity adaptation using weighted Euclidean metrics works
- Future work
 - more elaborate features
 - different algorithms for metric adaptation
 - Currently testing more elaborate processing of similarity votes
 - Gather similarity data with more context information
 - Comparison of user groups

Fin

Thank you