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Music Similarity Modelling

= Computer models of human music similarity judgements

= Computer systems applications:
Music exploration
Music recommendation
Music indexing and retrieval

= Research applications

Music psychology
Geographic models => ethnomusicology
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What Similarity
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Spot The Odd Song Out
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Relative Similarity Data

= 1 vote for “Odd Song Out” B implies 2 constraints
sim(A, C) > sim(A, B) AND sim(A, C) > sim(B, C)

= Compared to absolute similarity:
Fast input
No calibration needed

Fewer algorithms available Q/Q\g

Fewer data available

less
similar

More similar
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Modelling for User Groups

= Learn specific models
Better similarity prediction
for specific group?

= Applications s _ S

Personalisation o N7 oﬂ?
: P e
Group recommendation

Analyse model differences
= |solate attributes influencing similarity votes
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Grouping by Geography

= First experiments with user groups
= Most frequent attribute:
— Input location

= 4 European countries with most data e

North
Atlantic

Ocean

= “Macroculture” pop music
— Regional "microcultures” [Slobin 92]
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Four (Different) Sets

# unique 459 463 309 411
constraints
# clips 151 151 123 151
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Audio Features

= Million Song Dataset
Extractor: The Echo Nest “Analyse” API

= Key, mode, time signature, tempo
= Chroma & timbre features averaged per clip

= Statistics like [Slaney 2007]
Loudness, energy, beat, segmentation,
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Similarity Model

= Free parameter: Mahalanobis Matrix W
W transforms comparison space

dw (2,9) = \/(x — y)TW(z — y)

With feature vectors x,y

Iff W is positive definite, d,, qualifies as metric
= Can be slightly violated without causing problems
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Relative ITML

= |[nformation-Theoretic Metric Learning [Davis et al. 2007]
= QOptimises a Mahalanobis distance

Input: feature difference of clips (A,B)

Targets: absolute similarity data d, (A,B)

Optional regularisation by template matrix

= Extended to relative data: RITML

Iteratively generate absolute targets and update W
extending [Zheng et al. 2007]
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Results on Country Sets

= Train and test per country
= 10-fold cross-validation

= Test-set results:
Baseline: Euclidean metric
RITML slightly outperforms baseline
But below expectation ~ 66% [Wolff & Weyde 2013]

] FR SE UK AVERAGE
RITML 64.35 62.71 61.75 63.78 63.15
Euclidean 60.79 62.09 58.11 62.65 60.91
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Transfer Learning: Template

= Transfer knowledge from other datasets
Via pre-computed Mahalanobis matrix W,

= Compute four W, via RITML:

On combined 3-country datasets
* (FR+SE+UK for DE dataset)

Using matrix with best generalisation (to 3-country
datasets) as W,

= Use W, as starting point for RITML on one-country data
Leverage commonalities in the datasets
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Transfer Learning Benchmarks {7 tonoox

= W;,-Direct:
Test W, directly on one-country test-sets

= JOINT:
Combine all (DEFRSEUK) training data
Learn W directly via RITML
Evaluate per country
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Results of Transfer Learning

= All results on one-country test-sets

DE FR SE UK  AVERAGE

W,RITML  69.28 64.34 64.40 70.36 67.09

W,-Direct  67.61 65.97 64.81 69.02 66.85
JOINT  67.80 67.39 64.05 70.46 67.43
RITML  64.35 62.71 61.75 63.78 63.15
Euclidean  60.79 62.09 58.11 62.65 60.91

= Transfer learning
Outperforms RITML/ Euclidean (stat. significant)
Similar to JOINT model

= W, -RITML only successful for DE and UK

12/17/13 15



CITY UNIVERSITY
LONDON

W,-RITML Matrix DE

Final Mahalanobis matrix DE (WWO-RITML)

EST 1894

chroma weights
timbre

timbre weights
segmentDurationMean
segmentDurationVariance
timeLoudnessMaxMean
loudnessMaxMean
loudnessMax\ariance
loudnessBeginMean
loudnessBeginVariance
loudness

tempo

beatVariance

tatum

tatumConfidence
numTatumsPerBeat
timeSignature
timeSignature Stability
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Difference to W, CITY UNIVERSITY

EST 1894

Change of template Mahalanobis matrix to adapt to DE (WW0-RITML)
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Conclusion

= Introduced transfer learning via W, for relative similarity
Supports reuse of learning results without need for original data
Effects of fine-tuning on W show differences in similarity data

= Used datasets too variable / small
to train robust models per country
to analyse model differences

More data needed to find useful country-specific models (if they
exist)

Future goal: automatic selection of attributes
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